Mid-Rapidity Neutral Pion Production in Proton-Proton Collisions at \sqrt{s} =200 GeV

A. Bazilevsky,*1 A. Deshpande,*2 Y. Fukao,*3 and I. Younus,*4

Particle production at large transverse momenta, p_T , in hadronic reactions provides an important testing ground for perturbative Quantum Chromodynamics (pQCD). Successful description of measured particle p_T spectra with pQCD is necessary for interpretation of spin asymmetries in terms of polarized gluon and polarized quark distributions in the nucleon¹⁾. It also provides a reference needed to quantify nuclear effects in hadron production in heavy ion collisions²⁾.

First PHENIX results on inclusive π^0 production from proton-proton collisions at $\sqrt{s}=200~GeV$ in the 1–13 GeV/c π^0 p_T range from Year-2002 RHIC run (Run2) has been published³⁾. The analyzed data corresponded to $\sim 40~\text{nb}^{-1}$ integrated luminosity. In this paper we present an update of PHENIX π^0 cross section measurements based on $\sim 2~\text{pb}^{-1}$ data accumulated by PHENIX during the Year-2005 RHIC run (Run5). It enabled to extend the p_T range and to significantly decrease the statistical uncertainties of the measurements.

Analysis method for π^0 cross section measurement is described in details in ref³). $\pi^0 \to \gamma \gamma$ decays were detected using the electromagnetic calorimeter (EM-Cal)⁴⁾. EMCal locates at a radial distance of ~ 5 m from the beam line. Each of the towers in the calorimeter subtends $\Delta\phi \times \Delta\eta \sim 0.01 \times 0.01$, thus ensuring that the two photons from a decayed π° were clearly resolved up to a p_T of 12 GeV/c. At higher p_T the measured π^0 yields should be corrected for two photon merging probability, which was carefully studied with EMCal Monte Carlo simulation and cross checked vs Test Beam data results. The raw π^0 yields were also corrected for the p_T smearing arising from the EMCal resolutions and the steeply falling spectrum; and for the losses due to the disabled towers and the incomplete azimuthal coverage.

Low p_T part of π^0 spectrum was obtained from "minimum bias" (MB) data sample triggered by beambeam counters (BBC)⁵⁾. BBCs locate along the beam line at ± 1.44 m from the nominal interaction point and subtended the pseudorapidity range $\pm (3.0\text{-}3.9)$ with full azimuthal coverage. The BBC trigger cross section in Run5 was traced from Run2 and was found to be 22.9 ± 2.2 mb. Higher p_T π^0 measurements were done using EMCal based high p_T photon trigger³⁾ in coincidence with MB trigger. Its efficiency reached a plateau of $\sim 90\%$ at π^0 p_T of ~ 4 GeV/c. Since only a fraction

of inelastic proton-proton collisions produce particles which enter BBCs, the MB trigger condition biases the recorded data sample, so only a fraction of the inclusive π^0 yield was detected. This fraction was determined with another photon trigger, which was formed without MB trigger requirements. This fraction was found to be ~ 0.78 , independent of π^0 p_T .

Fig. 1 shows the π^0 cross section results in the p_T range from 1 to 20 GeV/c. NLO pQCD calculations⁶⁾⁷⁾ are consistent with the data over the full range of p_T .

Fig. 1. Upper: The invariant differential cross section for inclusive π° production (points) and the results from NLO pQCD calculations⁶⁾ with equal renormalization and factorization scales of p_T using the "Kniehl-Kramer-Pötter" sets of fragmentation functions⁷⁾. Bottom: The relative difference between the data and the theory with scales of $p_T/2$ (lower curve), p_T , and $2p_T$ (upper curve). In all figures, the normalization error of 9.7% is not shown.

References

- 1) S. S. Adler et al.: Phys. Rev. Lett. 93, 202002 (2004).
- 2) S. S. Adler et al.: Phys. Rev. Lett. 91, 072301 (2003).
- 3) S. S. Adler et al.: Phys. Rev. Lett. **91**, 241803 (2003).
- L. Aphecetche et al.: Nucl. Instrum. Methods A 499, 521 (2003).
- M. Allen et al.: Nucl. Instrum. Methods A 499, 549 (2003).
- F. Aversa et al.: Nucl. Phys. **B327**, 105 (1989); B.
 J"ager et al.: Phys. Rev. D **67**, 054005 (2003); D. de
 Florian: Phys. Rev. D **67**, 054004 (2003).
- 7) B. A. Kniehl et al.: Nucl. Phys. **B597**, 337 (2001).

-

^{*1} Brookhaven National Laboratory

^{*2} Stony Brook University

^{*3} Kyoto University

^{*4} University of New Mexico